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ABSTRACT

New air traffic management concepts distribute the re-
sponsibility for traffic separation among the several ac-
tors of the aerospace system. As a consequence, these
concepts move the safety risk from human controllers to
the on-board software and hardware systems. One ex-
ample of the new kind of distributed systems is air traf-
fic conflict detection and resolution. Traditional meth-
ods for safety analysis such as human-in-the-loop sim-
ulations, testing, and flight experiments may not be
sufficient in this highly distributed system: the set of
possible scenarios is too large to have a reasonable cov-
erage. This paper proposes a paradigm shift for the
safety analysis of avionics systems where formal meth-
ods drive the development of critical systems. As a case
study of this approach, we report the mechanical verifi-
cation of an algorithm for air traffic conflict resolution
and recovery.

1 INTRODUCTION

Air Traffic Management (ATM) has two competing ob-
jectives: maximize the efficiency of the airspace system
and provide a smooth and safe flow of traffic. One of
the most critical responsibilities of an ATM system is to
maintain traffic separation. Today, this responsibility
resides in a central authority, e.g., an Air Traffic Ser-
vice Provider (ATSP). The ATSP monitors the airspace
and issues clearances that are expected to be followed
by the aircraft. Efficiency is often sacrificed for safety
and there is little room for user preferences. Novel ap-
proaches to ATM, e.g., Distributed Air-Ground Traf-
fic Management (DAG/TM) (NASA 1999), Free-flight
(RTCA 1995, Hoekstra et al. 2000), address efficiency
problems of the current airspace system by distributing
the responsibility for traffic separation among all the
aircraft in the airspace. In these approaches, on-board
hardware and air traffic management software provide
surveillance, alert for possible loss of separation, and
advise corrective maneuvers.

On-board conflict detection and resolution (CD&R)
systems are critical components of new ATM concepts.
Since no human controller checks the output, the fun-
damental responsibility for air traffic separation resides
on distributed CD&R systems. Safety analysis of a
CD&R algorithm amounts to showing that for every
possible scenario, conflicts are detected and effectively
solved. Traditionally, this is done via extensive testing,
human-in-the-loop simulations, and flight experiments.
We argue that the traditional techniques are not suf-
ficient in this new distributed environment. Human-
in-the loop simulations, like all simulations, can only
describe phenomena that they have specifically mod-
eled. In addition, simulation results can be corrupted
by an unintentional bias in selecting scenarios for test.
Flight experiments are too expensive to obtain a sig-
nificant number of results. Worst of all, even when
discretized, the set of possible scenarios is too large to
obtain a reasonable coverage with testing, simulation,
and experimentation.

In this paper we propose a formal approach to safety
analysis of future ATM systems. As an illustration
of the first step in using this approach, we report
the mechanical verification of an algorithm for air
traffic conflict resolution and recovery, called RR3D
(Geser et al. 2002). The RR3D algorithm adds arrival
time constraints to a state-based geometric CD&R al-
gorithm (Dowek et al. 2001). It may be seen as a build-
ing block for strategic conflict resolution. We have for-
mally verified RR3D in the verification system PVS
(Owre et al. 1992). In our view, this verification is an
important step toward a new approach for safety anal-
ysis of air traffic management systems, where formal
methods drive the development and validation of criti-
cal systems.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the rationale for a formal safety analy-
sis methodology. Section 3 presents a short overview to
conflict detection and resolution modeling techniques.
Section 4 introduces the resolution and recovery algo-
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rithm RR3D. RR3D serves as a case study for our for-
mal approach to safety analysis in Section 5. Section 6
summarizes our work and discuss future research direc-
tions.

2 WHY FORMAL SAFETY ANALYSIS

Digital avionics systems have been used since the early
seventies. A fly-by-wire aircraft such as the Boeing 777
employs safety-critical software in its flight control com-
puters. This type of software is largely derived from
control theory based on rigorous mathematical meth-
ods that provide assurance of key properties such as
stability. Moreover, the basic stability of the aircraft
provides protection from occasional glitches in the con-
trol software.

On the ground side, most of the software associated
with ATM is packaged into decision support tools for
air traffic controllers, e.g., Center TRACON Automa-
tion System (CTAS) (Sanford et al. 1993). This soft-
ware provides information to controllers in a convenient
format to aid them managing the trajectories of the air-
craft in their sector. The failure of this software is mit-
igated by human intelligence that has many sources of
information about the aircraft under ATM control in-
cluding analog display of radar data. Consequently, the
safety risk resides primarily in the human controllers.
The main question to be asked about such software is
whether the software helps the controllers achieve their
operational goals. This question is best answered by
statistically designed and human factors oriented ex-
periments.

Future ATM concepts under development will utilize
software in ways that are fundamentally different from
the past. Many of these concepts move the safety risk
directly into executing software. A near-term example
of this is the ICAO’s (International Civil Aviation Or-
ganization) Required Navigation Performance (RNP)
initiative. RNP extends the capabilities of modern air-
planes by providing more accurate and precise naviga-
tion capability leading to more flexible airspace routes
and procedures in both visual and instrument condi-
tions. Although the RNP system will provide greater
accuracy, it will necessarily rely on more sophisticated
on-board software and external infrastructure such as
Global Positioning System (GPS) and their associated
systems such as the Wide Area Augmentation System
(WAAS). In these future ATM systems the safety risk
migrates from radar and controllers to on-board soft-
ware and critical technologies, such as GPS, that are
also dependent upon software systems. This software
consequently has a new safety role because no human
checks its validity. Hence, it is reasonable to re-examine
the methods by which we determine that software is

correct and reliable.
The safety analysis of air traffic management systems

cannot be accomplished using simulation and experi-
mentation alone. To verify that a piece of software is
correct, one must ensure that there are no reachable
unsafe states. Unfortunately, the state space of com-
plex systems is astronomically large. The input space
alone must cover the 3-D airspace in the vicinity of
an aircraft and all possible pilot inputs. Even if these
are discretized, the number of test cases that must be
examined to cover the input domain would require mil-
lions of years of experimentation. Extensive simulation
can only establish that a few states, compared with the
enormous set of possible states, are safe. From there, it
is unrealistic to infer that all states, or even that most
states, are also safe. A complete coverage of the sys-
tem set of states and the rigorous analysis of its safety
properties is only possible through Formal Methods.

Some have argued that since there are many unpre-
dictable elements in flight management, e.g., changing
weather, system failures, human errors, etc., it is im-
possible to achieve any guarantee about the behavior of
ATM algorithms in a systems context. They then con-
clude that a formal analysis of an ATM system is not
useful. Although it is not possible to issue an absolute
guarantee under all possible eventualities that an algo-
rithm will produce a successful outcome, formal tech-
niques can guarantee that an algorithm is correct for all
possible scenarios under well-defined assumptions. As
we will explain later, the explicit set of hypotheses un-
der which safety properties are valid is a by-product of
formal verification. In this paper we argue that formal
methods is an essential step in the validation process of
avionics systems.

In engineering when one encounters an extremely
complex and unpredictable environment, one seeks to
bring mathematical rigor to as much of the system’s do-
main as possible. This is done to minimize the uncer-
tainty in the system. One way to view formal analysis
is that all systems have a behavior that is dependent on
assumptions about the environment in which the sys-
tem operates and the logic contained within the system.
If the behavior of the system is incorrect then it must
be the case that either the assumptions or the logic are
incorrect. Formal verification ensures that the expected
behavior, i.e., the system requirements, matches the
logic, as long as the assumptions are valid. If a formally
verified system fails, then it must be the case that the
assumptions are not valid. Formal verification does not
simply produce a list of assumptions, it also provides a
framework where experts can uncover assumptions. It
is critical that the assumptions on which the system was
built are validated. Validating assumptions can only be
accomplished by human inspection, flight experiments,
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and simulations. Therefore, extensive simulations must
still be conducted to establish that the operational pro-
cedures that govern the new airspace concept are ade-
quate to sustain the assumptions that go into the formal
analysis of the software algorithms. And flight experi-
ments are performed to validate the assumptions of the
simulations. However, the idea that a flight experiment
can demonstrate the safety of an air traffic management
concept must be rejected. The number of input cases
covered in any flight experiment is so minuscule that its
usefulness for this purpose is essentially nil. Neverthe-
less, a flight experiment provides a critical capability
in that it can discover shortcomings and errors in the
assumptions that form the foundation for the analysis.
When problems are discovered here, the analysis must
be adjusted to reflect the more realistic characteristics
of the environment or the operational procedures must
be modified in order to rule-out the discovered problem
area.

A credible safety case for an advanced ATM system
will be a massive undertaking. The following is only a
rudimentary list of some of the key characteristics of a
comprehensive safety case.

• All of the requirements for safety must be captured
and expressed in a rigorous manner.

• Verifiable algorithms and designs must be used
whose behavior is fully explicated via mathemati-
cal theorems.

• The software implementations have been developed
in accordance with certification standards, such as
DO-178B, and shown to be faithful refinements of
the formally verified algorithms using code-level
verification.

• The operating system on which the software im-
plementation executes must provide guarantees of
integrity and performance.

• The operational procedures have been shown to be
complete and safe and extensively simulated.

• All of the assumptions of the formal analysis have
been subjected to extensive investigation through
simulation and flight experimentation.

• The probability of failure (due to physical faults) of
critical components and in the infrastructure sys-
tems must be shown to meet strict reliability re-
quirements on the order of 10−9.

• The adequacy of the fault-tolerance strategies must
be accomplished using fault-trees and Markovian
analysis as well as laboratory experimentation.

• The pilot/controller workload associated with the
advanced systems must be shown to be reasonable
via simulated and flight experiments.

• All of the traditional environmental simulation and
experimentation, such as DO-160, must also be
performed.

We believe that the existing incremental approach to
system safety will be inadequate to convince regulatory
agencies, such as the Federal Aviation Administration
(FAA) in the US, that future ATM systems that rely
on complex distributed software implementations are
certifiably safe. We believe that safety cases built on the
foundation of provably correct algorithms and designs
is the only viable approach for future ATM systems.

As a first step toward a safety case of an advanced
ATM concept, we report in this paper the mechanical
verification of an algorithm for conflict resolution and
recovery, called RR3D (Geser et al. 2002). The original
presentation of that algorithm contains a hand-written
proof of its correctness. Although, in essence, the algo-
rithm is correct, the mechanical verification revealed
missing assumptions and a few errors in the hand-
written proof. This supports our belief that mechanical
verification is valuable even when the system has been
diligently analyzed. Without a mechanical proof, it is
almost impossible to find such kind of errors. A missing
assumption, for example, could result in a fatal error in
a real implementation of RR3D.

Since the RR3D algorithm has been formally verified,
we are confident that it is logically correct. Neverthe-
less, this algorithm must be translated into a machine-
executable language, such as Ada or C, and interact
with the external environment. This will necessitate
several more steps of logical design each potentially vul-
nerable to errors being introduced. There are many
issues that must be addressed as this is done:

1. The algorithm operates over the real numbers not
floating point numbers. The executable code must
deal with overflow, underflow, and all the usual
numerical problems.

2. The algorithm assumes no errors are present in the
state data of the aircraft involved. But even the
best sensors provide only approximate values and
so the effect of this error must be handled. Fur-
thermore, the system must be able to handle some
number of failures, i.e., it must be fault-tolerant,
so these design refinements must be rigorously ex-
amined as well.

3. The algorithm operates in a real-time environment,
so one must establish that the system on which the
algorithm executes has sufficient CPU time (under
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all possible scenarios) to complete the RR3D algo-
rithm.

This process of design refinement can itself be captured
in a sequence of successfully more complete formal mod-
els finally resulting in an implementation or a detailed
specification from which an implementation can be syn-
thesized. Each of these formal models can be shown to
satisfy all the properties of the higher model. This pro-
cess is usually referred to as design proof and the final
verification that carries one down to the implementa-
tion code is called code verification. If the last step is
accomplished using synthesis, the code that implements
the synthesizer itself must be verified or its output vali-
dated against the detailed design. It should be pointed
out, that our work on RRD3 has only accomplished the
first step, namely the top-level proof that the mathe-
matical algorithm meets its specified properties. Future
work will look at more of these system level issues.

3 CONFLICT DETECTION, RESOLUTION,
AND RECOVERY

CD&R algorithms are designed to warn about poten-
tial loss of air traffic separation and output avoidance
maneuvers to be flown by the aircraft.

There is a wide variety of approaches to CD&R be-
cause there are different ways to (1) predict the future
trajectories, (2) define what constitutes close proximity
of trajectories, (3) calculate the resolution trajectories,
and (4) gain assurance about the safety and effective-
ness of the algorithms. Algorithms also differ in the do-
main of application: (1) how far ahead in time should
a conflict be detected, (2) whether the algorithm deals
with only 2 conflicts at a time or handles multiple si-
multaneous conflicts, and (3) the amount of coordina-
tion and communication needed to implement the al-
gorithm. Kuchar and Yang (2000) lists several CD&R
modeling methods and proposes a taxonomy to classify
them.

Furthermore, in the recent years, new ap-
proaches for CD&R have been proposed that
use non-standard programming techniques
such as genetic algorithms (Durand et al. 1996,
Granger et al. 2001, McDonald and Vivona 2000),
neural networks (Durand et al. 2000), game
theory (Tomlin et al. 1998), graph theory
(Chiang et al. 1997), and semi-definite program-
ming (Frazzoli et al. 2001). Given the computational
complexity of some of these techniques, they usually
require costly time and space discretizations. In
contrast to these approaches, the geometric approach
(Eby 1994, Hoekstra et al. 2000, Bilimoria 2000,
Dowek et al. 2001) is based on standard and well-
understood analytical techniques. In Kuchar & Yang’s

taxonomy, the geometric modeling correspond to
nominal trajectories with either optimized or force
field resolutions. Nominal trajectories are linear
projections of the current position and velocity vectors.
The conflict resolution problem is then expressed as
a set of polynomial equations that are solved using
classical analytical techniques. Since linear projections
produce prediction errors that are negligible for short
look-ahead times, this approach is also referred to as
tactical. For large look-ahead times a more strategic
approach that looks at the pilot intent information,
e.g., flight plan, is in order. While tactical approaches
have well-understood geometric descriptions that allow
for efficient and clear algorithms, they may fall short
on pilots’ expectations (Wing et al. 2001).

Resolution and recovery algorithms, called
resolution with arrival time constraints in
(Bilimoria and Lee 2002), generate, in addition to
the avoidance maneuver, return trajectories that bring
an aircraft back to its nominal path.

Figure 1 illustrates the environment where conflict
resolution and recovery takes place in an abstract dis-
tributed ATM system. On-board measurement devices
capture the current state of the aircraft and broadcast
this information to all the aircraft in the same sector.
When the conflict detection module detects a potential
conflict within a look-ahead time, the resolution and
recovery module computes a list of escape and recovery
maneuvers. The choice of maneuvers is displayed at the
cockpit interface for pilot selection or it may be input
to a navigation system that automatically selects the
optimal maneuver among the choice.

4 RR3D

In RR3D, aircraft are represented by a kinematic par-
ticle model with the center of gravity as the coordi-
nate point. Furthermore, trajectories are assumed to be
composed of linear segments: speed is constant within a
segment and from one segment to another acceleration
is instantaneous. RR3D resolves conflicts in pairwise
fashion where the traffic aircraft (also called intruder)
is surrounded by a cylindrical protected zone P of di-
ameter 2D and height 2H, where D is the required hor-
izontal separation and H is the required vertical sepa-
ration. A conflict is an intrusion of the ownship in the
traffic’s protected zone. RR3D computes conflict-free
escape and recovery maneuvers that are tangential to
the intruder’s protected zone.

For simplicity, we chose a relative coordinate system
where the intruder aircraft is fixed at the origin. RR3D
has the following inputs:

• Relative position ~s of ownship with respect to in-
truder.
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Figure 1: Distributed ATM System

• Velocity vector of ownship ~vo.

• Velocity vector of intruder aircraft ~vi.

• Arrival time t′′ at a relative target point s′′, which
is defined as

~s′′ = ~s + t′′~v,

where ~v = ~vo − ~vi.

RR3D outputs a choice of escape and recovery ma-
neuvers for the ownship, i.e., triples (~v′o, t

′, ~v′′o ) where ~v′o
is the escape velocity vector, t′ is the time of turn, and
~v′′o is the recovery velocity vector. Figure 2 illustrates
RR3D’s functionality for a single output.

ov

ov"

v’o
RR3D

iv
t"

s

t’

Figure 2: RR3D: Input/Outputs

Escape and recovery maneuvers are constrained in
such a way that both ~v′o and ~v′′o satisfy one of the fol-
lowing conditions:

1. Change of vertical speed only. The ownship’s ver-
tical speed may change but neither its heading nor
its ground speed may change. Formally,

v′ox = vox = v′′ox, v′oy = voy = v′′oy. (1)

2. Change of ground speed only. The ownship’s
ground speed may change but neither its heading
nor its vertical speed may change. Formally, there
are k > 0, j > 0 such that

v′ox = kvox, v′oy = kvoy, v′oz = voz,
v′′ox = jvox, v′′oy = jvoy, v′′oz = voz.

(2)

3. Change of heading. The ownship’s heading and
ground speed may change. In the two dimen-
sional projection, the escape course and the re-
covery course (each in absolute coordinates) form
a triangle. By the triangle inequality, the escape
course and the recovery course together are longer
than the original course. To arrive at the target
point at time t′′, the ownship has to compensate
the longer way by a greater average ground speed
as opposed to its original ground speed. Hence,
maneuvers where only heading changes are allowed
cannot reach the target point in time. In this case,
we propose a change of heading combined with a
change of ground speed at time t′. For the escape
step, the ownship’s heading may change, but nei-
ther its ground speed nor its vertical speed; for the
recovery step in addition to a heading change, one
must allow for a change of ground speed as well.
Formally,

v′2ox + v′2oy = v2
ox + v2

oy,
voz = v′oz = v′′oz.

(3)

Furthermore, we require that the escape and recov-
ery courses are tangential to the lateral surface of the
protected zone. Tangential courses solve a predicted
conflict in an optimal way. They require the least
effort to correct the original trajectory such that the
ownship arrives at the next trajectory change point at
the scheduled time while maintaining separation. We
also request that the turn time t′ be constrained by
0 < t′ < t′′. Original, escape, and recovery courses are
illustrated in Figure 3.

Recovery course

t’

Escape course

t=0

t’’

Original course

Intrusion interval

New trajectory
change point

Figure 3: RR3D: Graphically
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5 FORMAL VERIFICATION OF RR3D

A unique feature of the RR3D algorithm is that its
functional behavior has been mathematically analyzed.
More specifically, Geser et al. 2002 present a rigorous
proof of the following property that we call RR3D cor-
rectness. Given that

• aircraft are not in conflict at either the initial point
nor at the target point

s2
x + s2

y > D2 or s2
z > H2,

s′′
2
x + s′′

2
y > D2 or s′′

2
z > H2,

(4)

• aircraft are in predicted conflict: there is a time
0 < t < t′′ such that

(sx + tvx)2 + (sy + tvy)2 < D2,
(sz + tvz)2 < H2,

(5)

the following propositions hold:

• Escape course maintains separation. Let ~v′ = ~v′o−
~vi; then for all times 0 ≤ t ≤ t′

~s + t~v′ /∈ P. (6)

• Recovery course maintains separation. Let ~v′′ =
~v′′o − ~vi; then for all times t′ ≤ t ≤ t′′

~s + t′~v′ + (t− t′) ~v′′ /∈ P. (7)

• Arrival time constraint is respected. Formally,

~s + t′~v′ + (t′′ − t′) ~v′′ = ~s′′. (8)

The formal verification essentially follows the hand-
written proofs in Geser et al. 2002. However, the for-
mal effort revealed a few assumptions that were miss-
ing and some logical errors in the original argument.
This is not surprising. By formalizing every detail of
the correctness argument, mechanical verification en-
ables the discovery of errors that otherwise would be
almost impossible to find. The PVS proofs of correct-
ness and of satisfaction of the chosen constraints are
complete. The formal specification of the algorithm in
PVS, including 431 claims, is about 3K lines. The cor-
rectness proof for these claims is about 19K lines in
size. This development is available as a PVS dump at
<http://research.nianet.org/fm-at-nia>.

Geser et al. 2002 describe the RR3D algorithm as a
set of solutions to polynomial equations that satisfy one
of the constraints (formulas 1, 2, or 3), the initial as-
sumptions (formulas 4 and 5), and the correctness prop-
erty (formulas 6, 7, and 8). The solutions are catego-
rized according to the part of the surface of P that

is touched during the escape and recovery courses. In
particular, the ownship may touch the cylinder either
at its lateral boundary, then we speak of a line case,
or at its top or bottom disks, then we speak of a cir-
cle case. If only the disks are touched then one disk
may be touched once or twice, or both disks may be
touched once each. For instance, Figure 3 illustrates a
line-line case, i.e., both escape and recovery courses are
line cases.

The combinations of these sub-cases produce a large
number of resolution and recovery maneuvers. The
RR3D algorithm evaluates each case. If a suitable ma-
neuver is not possible for a particular case, then the
algorithm reports no maneuver for that case. The algo-
rithm collects all solutions and produces a list of escape
and recovery maneuvers. The interesting part of the
formal verification is to show that given a case where a
solution is generated for particular constraint (formu-
las 1, 2, and 3), if the initial state satisfies formulas 4
and 5, the solution satisfies formulas 6, 7, and 8.

The basic problem we encountered during the formal
verification is that of managing complexity. We address
this problem by stating, proving, and reusing lemmas
about common parts or aspects of the design. For in-
stance, after a preliminary analysis of the problem, we
realize that in all the cases, correctness is achieved by
combination of the following criteria:

line_case_correctness : THEOREM
hor_sep?(s) AND
hor_pass?(-1,s,v) AND hor_pass?(1,s,v)

IMPLIES separation?(s,v)

circle_case_correctness : THEOREM
hor_sep?(s) AND hor_pass?(eps,s,v) AND
vert_sep?(s) AND vert_pass?(-eps,s,v)

IMPLIES separation?(s,v)

Here, the propositions hor sep?(s) and
vert sep?(s) denote the inequations s2

x + s2
y ≥ D2

and s2
z ≥ H2, respectively. They state that the point

s is horizontally or vertically separated from the
intruder. The propositions hor pass?(ε,s,v) and
vert pass?(ε,s,v) denote the inequations εszvz ≥ 0
and ε(sxvx + syvy) ≥ 0, respectively. They state
that the velocity vector v has a horizontal or vertical
component in the direction of s (for ε = 1) or in the
opposite direction (for ε = −1). If hor pass?(ε,s,v)
holds for both ε = 1 and ε = −1 then the horizontal
projections of s and v are orthogonal. In this case, s is
the closest approach point to the intruder.

The line case correctness theorem states that the
moving point s + tv is separated at any time t, pro-
vided that the point s is horizontally separated and the
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horizontal projections of v and s are orthogonal. Intu-
itively, v points to a tangent direction at radius vector
s. The circle case correctness theorem states that
the moving point s+ tv is separated at any time t, pro-
vided that the point s is both horizontally and verti-
cally separated and the inner product of the horizontal
projections of v and s has a sign opposite to the inner
product of the vertical projections of v and s. Intu-
itively, s is the point where horizontal separation ends
and vertical separation starts, or vice versa. We use
each theorem with s instantiated with the touch point.

Let us study the line-line case where only the hori-
zontal speed is changed. For ground speed change, the
ownship’s new velocity vector during escape course is
v′o = (kvox, kvoy, voz) where the real number k > 0 de-
notes the magnitude of speed change. There is a similar
formula for the recovery course and a magnitude j > 0.
The case routine first determines k and so the solution.
It then checks the solution for eligibility. The following
lemma in PVS forms the basis of the separation proof
of the escape course, which is a line case:

gs_l_esc_sep: LEMMA
ground_speed_change?(k,vo,vi,v’) AND
v = vo - vi AND
hor_strict_sep?(s) AND
hor_move?(vo) AND
pred_conflict?(s,v,t’’) AND
kappa_defined?(s,vo,vi) AND
k = kappa(eps,s,vo,vi) IMPLIES

separation?(s,v’)

This lemma states that the ownship’s relative move-
ment s+ tv′ during the escape course maintains separa-
tion to the intruder for all time t (separation?(s,v’)),
provided that v′o is a ground speed change from
vo (ground speed change?(k,vo,vi,v’)), i.e., v′o =
v′ − vi = (kvox, kvoy, voz) by a factor of k where
k is given by kappa(eps,s,vo,vi); the start-
ing point s is horizontally separated and not at
the boundary (hor strict sep?(s)); the ownship’s
ground speed is not zero (hor move?(vo)); and
a conflict is predicted for the original trajectory
(pred conflict?(s,v,t’’)).

In the proof of the lemma, we use the
line case correctness theorem, instantiated
by the touch point s + τ(s, v′), where τ(s, v′)
is the time of closest approach to the protected
zone for the escape course. The theorem yields
separation?(s + τ(s, v′), v′) which is easily shown
equivalent to the claim separation?(s,v’). This
leaves us to discharge the assumptions ∆(s, v′) = 0
and hor sep?(s + τ(s, v′)). The equality ∆(s, v′) = 0
indicates a tangent to the infinite cylinder through
point s. From the premise pred conflict?(s,v) we

can infer hor move?(v), i.e., that v has a non-zero
horizontal projection. Then hor sep?(s + τ(s, v′))
follows from hor move?(v) and ∆(s, v′) = 0. In
order to show ∆(s, v′) = 0, we first show ∆(s, v) > 0
which follows from pred conflict?(s,v), and show
that then kappa(eps,s,vo,vi) is a solution of the
quadratic equation ∆(s, v′) = 0. The inequality
∆(s, v) > 0 indicates that there are two intersections
of the movement s + tv with the lateral boundary of
P . This is the case with a predicted conflict.

There is a similar lemma for line-recovery, the line
case of the recovery course. The factors k and j to-
gether determine the time t′ by the timeliness goal. An-
other lemma states that if we have a predicted conflict
then the “ground-speed/line/line” case routine of the
algorithm provides all premises of lemma gs l esc sep.
Put together they form the correctness proof of the
ground-speed/line/line case of RR3D. By exchanging
the recovery course with a circle-recovery case we ob-
tain the ground-speed/line/circle case, and so forth.

6 CONCLUSION

In this paper, we argue for a formal approach to the de-
velopment of safe Air Traffic Management (ATM) sys-
tems. We also report the formal verification of a critical
component of a distributed ATM concept: an air traffic
resolution and recovery algorithm.

Formal verification provides a systematic way to iden-
tify and reduce the unpredictability. By a formal verifi-
cation, the designer documents all assumptions unam-
biguously, and demonstrates full comprehension of the
verified component including the interface with neigh-
bor components. This helps the designer to make nec-
essary adjustments to the components that do not quite
fit the interface. So we claim that having a set of al-
gorithms whose behavior is fully understood under ex-
plicitly stated assumptions greatly aids the designer of
ATM operational systems. Not only is the designer lib-
erated from having to think about contingency plans for
failures of the algorithm, but by knowing the assump-
tions built into the algorithm, the designer has explicit
knowledge about where to focus attention to produce a
robust and safe operational concept. In this approach,
human-in-the-loop simulation and expensive flight ex-
periments are used to validate assumptions made dur-
ing the formal verification. This is major shift from tra-
ditional approaches where testing and simulation drive
the safety validation and certification of avionics sys-
tems.

We should note that a proof of correctness of an al-
gorithm does not guarantee a fault-free system. This
is because the algorithm implicitly makes idealized as-
sumptions. The verification of a system implementa-
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tion must therefore provide a proof that the algorithm
is faithfully implemented. This includes issues such as
floating point overflow and underflow, rounding errors,
validity of input data, real-time deadlines on execution,
communication flaws, etc. Furthermore, at the sys-
tem design level additional algorithms are introduced
to handle inter-aircraft communications (e.g. ADS-B),
to detect and mask faulty input data, to format output
data for pilot displays, to schedule the execution, to co-
ordinate with other systems such as flight planners, etc.
These algorithms, too, must be shown to satisfy critical
safety properties.

The verification of a resolution and recovery algo-
rithm is only a first step toward the system verification
of an ATM system. As a next step the RR3D algorithm
may be refined into a high-level design, which is then
translated into a programming language. This step will
be accompanied by formal proofs of the faithfulness of
the transitions. An ATM system that integrates an im-
plementation of RR3D will be formally supported by
several layers of abstraction as illustrated in Figure 4.

Concrete

AbstractFormal Proof

Formal Proof

ATM System Design

ATM Implementation

ATM Core Algorithms

Simulation and Experimentation

Figure 4: System Verification

Finally, we enumerate some issues related to system
verification that we are currently looking into or plan-
ning to do so in the near future.

• Strategic CD&R. RR3D is a state-based CD&R
algorithm with minimal intent information. It
propagates an aircraft trajectory based on its
current location, velocity vector, and arrival
time constraint. The arrival time constraint
makes RR3D suitable for strategic CD&R. Indeed,
Geser and Muñoz 2002 describe an algorithm that
incorporates RR3D into a conflict-free flight plan-
ner. The correctness of the flight planner is based
on the correctness of RR3D. The resolution and
recovery algorithm effectively helped us to decom-
pose the complexity of both the flight planner and,
more importantly, its correctness proof.

• Geodesic Coordinates. As most geometric
CD&R algorithms, RR3D is presented in a Carte-

sian coordinate system assuming a flat earth. On
top of RR3D, we have developed an interface mod-
ule that converts from geodesic coordinates to
Cartesian system that minimizes errors due to the
flat earth assumption. The formalization and cor-
rectness proof of the coordinate transformation is
in progress.

• Floating Point Errors. The verification of
RR3D assumes exact real arithmetic. In con-
trast, usual programming languages provide float-
ing point arithmetic. It is well-known that floating
point numbers violate some elementary properties
of real numbers. An interval analysis of RR3D
that considers floating point errors, underflows,
and overflows will complement a preliminary work
on refinement of abstract algorithms into real-life
programming languages.
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